What is HexSim?

- **→** It is a computer simulation model.
- → It is useful for evaluating wildlife population responses to human activities.
- → It is modern and sophisticated, but flexible and easy to use.
- → It can be used with a large range of places, problems, and questions.

How is HexSim Different?

- → It has a wide range of potential applications.
- → It contains no simplifying assumptions about the biology or ecology of the study systems
- → Every individual can have unique properties that change throughout their lifetimes
- → Can simulate population interactions, stressor interactions, landscape genetics, and more
- → Modern and easy to use, with graphical user interfaces (GUI) for every model component

Why Hexagons?

- **→** They provide a space-filling tesselation
- → Each of a hexagon's neighbors is the same distance away.

What Can HexSim Do?

Life History Events

- **→** Survival
- **→** Reproduction
- **→** Movement
- **→** HexMap Generation
- **→** Species Interaction
- **→** Species Introduction
- **→** Mutation
- → And so on...

Trait Types

- **→** Probabilistic Traits
- **→** Accumulated Traits
- **→** Heritable Traits

HexSim Features

- **→** Spatially-Explicit and Individual-Based
- **→** Dynamic Landscape Change
- **→** General and Flexible
- **→** Multi-Stressor with Interactions
- **→** Multi-Population with Interactions
- **→** Females-only or 2-Sex Simulations
- **→** Two Mate-Finding Sub-Models
- **→** Life History Events Stratified by Traits
- **→** Modern Interface
- **→** Useful Outputs

Movement Barriers

Hypothetical Example of a Moderate-Complexity Scenario

Disturbance affects fitness, which in turn impacts disease status, survival, and reproduction

Movement barriers
affect survival rates
because they can limit
the spread of the disease

The Trait Structure Used in This Example

Example: Red-cockaded Woodpeckers

Red-cockaded Woodpecker Habitat

HexSim Genetics

- → Each individual is assigned a genome
- → Populations can have any number of loci
- → Each locus can have any number of alleles
- → Inheritance can be from mother, father, or from both parents (per locus)
- → User-defined initial conditions, include spatial stratification of alleles

HexSim Genetics (cont.)

- → Mutation events my be influenced by non-heritable traits (e.g. exposure)
- → Heritable traits may be neutral or adaptive
- → Heritable and other traits may be combined to influence life history events
- → Map-distances may be used to simulate chromosome crossover

Example: Predators & Prey

- **→** Two interacting populations
- → Predators & prey use different mating schemes
- → Prey live in colonies, predators do not
- → Predator males track prey Predator females track males
- → Predator capture efficiency is controlled through a heritable trait.
- → Capture efficiency influences reproduction through a resource acquisition trait
- → Mutation alters capture efficiency trait

Population Size

Allele Frequencies

